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Eager vs Lazy learning methods for Classification
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Eager vs Lazy Learning Methods for Classification

• Eager learning methods
– Global approximations of concepts (generalizations)
– Global models are used for classifying new problems

• Lazy learning methods
– Local approximations of concepts
– Generalizations are not used for classifying new problems



How generalizations could be used in a lazy method?



Precedents

• PROTOS (Bareiss and Porter, 1987)
– Generalizations are used to define categories of cases
– Each category is represented by an exemplar
– New problems are compared with the exemplars

• Generalized cases (Bergmann & Stahl, 1998)
– A case represent a part of the solution space
– Cases are clustered according to the solution space

• Point case, Constant/Functional solution generalized case,
Dependent/Independent alternative solution generalized case

• INRECA Project (1992-1995) (Manago, Bergmann, et al)
– Combines decision trees with CBR



Lazy Induction of Descriptions (Armengol and Plaza, 2001)

• Lazy learning method

• Useful for classification tasks

• LID handles objects represented as feature terms

• LID builds a generalization that can be interpreted as
representative of a set of cases



Lazy Induction of Descriptions (LID)
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Function LID (p, D, SD, C)
  if stopping-condition (SD) then return class (SD)
       else  fd := Select-leaf (p, SD, C)
               D’ := Add-path (π(root (p), fd ), D)
               SD’ := Discriminatory-set (D, SD)
               LID (p, D’, SD’, C)
  end-if
end-function

The similitude term of a set of cases is a
generalization formed by the features of
p assessed as relevant for classifying p

Similitude terms



LID

• LID is a lazy learning method useful for classification tasks
• Given a new problem p the outcome of LID is

– A classification for p
– A similitude term that contains the features that have

been assessed as the most relevant for classifying p

The similitude term (a generalization) is not used for solving new problems



Usages of the generalization

• Generalization as symbolic similarity

• For building partial domain models

• Generalization as explanation



Generalization as Symbolic Similarity
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Classification of Marine Sponges



Example (I) : Marine Sponge Classification
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Example  (II) :Marine Sponge Classification
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There are 30 precedents in the case base that
share with sponge-82 the features in the similitude
term. All them belong tot the Astrophoridae order



Generalization as Symbolic Similarity
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Summary : Generalization as symbolic similarity

• Generalizations can be interpreted as symbolic similarities
because they contain aspects that are shared by a subset
of examples of a class



Usages of the generalization

• Generalization as symbolic similarity

• For building partial domain models

• Generalization as explanation



Predictive Toxicology
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Example: Predictive Toxicology

• The problem
– New chemical compounds have to be deeply tested before introduce

them in the market
– The goal is to determine the potential carcinogenesis of new

compounds
– There are standard protocols to establish when a chemical

compound is carcinogenic
• Short-term experiments (90 days)
• Long-term experiments (2 years)
• High cost
• Sometimes experiments are inconclusive

• Use of computational methods (Predictive Toxicology Challenge, 2001)
• To reduce the experimental time
• To build a model of carcinogenesis



Our approach (Armengol and Plaza, 2004)

• To use lazy techniques for characterizing different classes of
chemical compounds
– LID and C-LID

• Why?
– It is difficult to build a general description of the solution

classes
– Lazy techniques do not built intensional descriptions of

the solution classes



Generalization for building (partial) Domain Models
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Using C-LID

• Goal: to use the similitude terms generated by LID for
analyzing the compounds of the Toxicology dataset

– Eager process:
• LID with leave-one-out method to generate similitude terms
• To select a subset of similitude terms
• Analyze the case-base using the selected similitude terms

– Lazy process

Function C-LID (p, D, SD, C)
  if p satisfies some similitude term then return class
       else LID (p, D, SD, C)
  end-if
end-function



The eager process of C-LID

case base
pi

case base

LID

pi belongs to Cj 
Similitude term: Di 

Is Di “good” enough?



2 positive examples 
0 negative examples

compound
main-group = acyclic-unsaturated

main-group = butane

4 positive examples 
0 negative examples

compound
p-radicals = position-radical

radicals = compound
main-group = epoxyde

15 positive examples 
40 negative examples

compound
p-radicals = position-radical

radicals = compound
main-group = amine

6 positive examples 
2 negative examples

compound
p-radicals = position-radical

radicals = compound
main-group = bromine



The eager process of C-LID

case base
pi

case base

LID

pi belongs to Cj 
Similitude term: Di 

Is Di “good” enough?

no Reject it

yes Store it

Similitude terms



The eager process of C-LID

case base

C-LID

Similitude terms

 if exist similitude term satisfying p then use it else LID
 use LID. If the solution has not enough support then use similitude terms
 use both similitude terms and LID

p

partial domain model



Summary: building partial domain models

• Eager learning methods produce complete domain models in
the sense that class descriptions satisfy all known examples
– In complex domains these descriptions could be too

generals

• Using lazy learning methods we can obtain partial domain
models since class descriptions are satisfied by a subset of
examples of each class
– In complex domains these descriptions could not be

discriminatory



Usages of the generalization

• Generalization as symbolic similarity

• For building partial domain models

• Generalization as explanation



What to explain in lazy learning methods?

– To explain the Retrieve
• Based on similarities

– To explain the Reuse
• Based on similarities among the problem and the cases of

each class
• The user can easily understand the differences among the

cases of each class



State of the art

• Given a problem, a CBR system retrieves the most similar case
– Cases have a complicated structure (Doyle et al, 2003; McSherry,

2005)

• For some domains (e.g. Medicine) experts understand better a description
of the differences between the problem and the retrieved cases

• The more explanatory cases are those close to the frontiers of classes
(Doyle et al, 2004)

• An explanation should make explicit the contribution of each feature value
to the classification of the problem (Nugent and Cunningham, 2005)

• Both the similarities and differences between problem and retrieved cases
are useful for CBR explanations (McSherry, 2005)



Generalization as Explanation (Armengol and Plaza, 2004)

 Our approach: usage of symbolic similarities to explain the classification

1) Explanation of Retrieve
 A symbolic description consisting of all that is shared by the problem

and the retrieved cases

2) Explanation of Reuse
 Cases are organized according to the class
 A symbolic description for each class
 Each symbolic description consists of all that is shared by the

problem and the cases of a class



Generalization as Explanation (Armengol and Plaza, 2004)

 Our approach: usage of symbolic similarities to explain the classification

1) Explanation of Retrieve
 A symbolic description consisting of all that is shared by the problem

and the retrieved cases

2) Explanation of Reuse
 Cases are organized according to the class
 A symbolic description for each class
 Each symbolic description consists of all that is shared by the

problem and the cases of a class

- Similitude terms of LID
- Anti-unification concept



The Anti-unification concept

• A generalization is a description showing (some) aspects
shared by a set of objects

• The most specific generalization (anti-unification) is a
description showing all aspects shared by a set of objects

The anti-unification is a symbolic similarity



Example : Anti-unification
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Explanation scheme

1) Explanation of Retrieve
 A symbolic description consisting of all that is

shared by the problem and the retrieved cases

2) Explanation of Reuse
 Cases are organized according to the class
 A symbolic description for each class
 Each symbolic description consists of all that is

shared by the problem and the cases of a class



Example: Predictive Toxicology
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Example: AU*
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Example: AU+

O-compound

rad1 NH2



AU * : anti-unification of retrieve set and problem

rad1

O-compound position?       rad2

AU- : anti-unification of negative cases and problem

rad1     rad3

O-compound
position?       rad2

AU+ : anti-unification of positive cases and problem

rad1

O- compound

NH2



Generalization as Explanation
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The similitude term as explanation

1) Explanation of Retrieve
 A symbolic description consisting of all that is shared by the

problem and the retrieved cases

2) Explanation of Reuse
 Cases are organized according to the class
 A symbolic description for each class
 Each symbolic description consists of all that is shared by the

problem and the cases of a class

A symbolic description (the similitude term) with the features of the
problem relevant for the classification (Armengol, 2007)



Anti-unification vs similitude term

• Similitude term of LID
– Contains the features relevant for classification
– Supervised data

• Anti-unification
– Contains all that is common among a set of cases
– It is independent on the similarity measure used for

retrieval
– Semi-supervised data

• Explanation of clusters (Fornells et al., 2007)



Conclusions

• Generalizations are present in both eager and lazy learning
methods
– Eager learning methods build global approximations
– Lazy learning methods build local approximations

• We propose three usages of generalization :
– As symbolic similarity among cases since generalizations

contain aspects shared by a set of objects
– By storing the generalizations built by lazy learning methods

we can obtain partial domain models
– Generalizations can be interpreted as explanations of the

system result




