Usages of Generalization in CBR

Eva Armengol

eva@iiia.csic.es

Artificial Intelligence Institute (IIIA)

Spanish Research Council (CSIC)

Barcelona

- Eager vs Lazy learning methods for classification
- Precedents
- Lazy Induction of Descriptions (LID)
- Usages of generalization

Eager learning methods

Eager learning methods

- Global approximations of concepts (generalizations)
- Global models are used for classifying new problems

Lazy learning methods

- Local approximations of concepts
- Generalizations are not used for classifying new problems -

- PROTOS (Bareiss and Porter, 1987)
 - Generalizations are used to define categories of cases
 - Each category is represented by an *exemplar*
 - New problems are compared with the exemplars
- Generalized cases (Bergmann & Stahl, 1998)
 - A case represent a part of the solution space
 - Cases are clustered according to the solution space
 - Point case, Constant/Functional solution generalized case, Dependent/Independent alternative solution generalized case
- INRECA Project (1992-1995) (Manago, Bergmann, et al)
 - Combines decision trees with CBR

Lazy Induction of Descriptions (Armengol and Plaza, 2001)

- Lazy learning method
- Useful for classification tasks
- LID handles objects represented as feature terms
- LID builds a generalization that can be interpreted as representative of a set of cases

Lazy Induction of Descriptions (LID)

- LID is a lazy learning method useful for classification tasks
- Given a new problem p the outcome of LID is
 - A classification for p
 - A similitude term that contains the features that have been assessed as the most relevant for classifying p

The similitude term (a generalization) is not used for solving new problems

- Generalization as symbolic similarity
- For building partial domain models
- Generalization as explanation

Generalization as Symbolic Similarity

Cases/features	a ₁	a ₂	a ₃	a ₄	classes
c ₁	0	1	0	0	
c ₂	1	1	0	0	
с ₃	0	1	0	1	0
c ₄	0	1	1	0	
p	1	1	1	0	

important features similitude terms

a₂

a₃

$$a_4$$
 $a_2 = 1 \text{ and } a_4 = 0$

 $a_2 = 1$ and $a_4 = 0$ and $a_3 = 1$

a₂ = 1

- p is similar to c_1 , c_2 , c_3 and c_4
- p is similar to c_1 , c_2 and c_4
- p is similar to C_4

Example (II) : Marine Sponge Classification

PROTOS (Kolodner, 1993)

 Generalizations can be interpreted as symbolic similarities because they contain aspects that are shared by a subset of examples of a class

nicotine

Example: Predictive Toxicology

- The problem
 - New chemical compounds have to be deeply tested before introduce them in the market
 - The goal is to determine the potential carcinogenesis of new compounds
 - There are standard protocols to establish when a chemical compound is carcinogenic
 - Short-term experiments (90 days)
 - Long-term experiments (2 years)
 - High cost
 - Sometimes experiments are inconclusive
- Use of computational methods (Predictive Toxicology Challenge, 2001)
 - To reduce the experimental time
 - To build a model of carcinogenesis

Our approach (Armengol and Plaza, 2004) To use lazy techniques for characterizing different classes of chemical compounds - LID and C-LID Why? • - It is difficult to build a general description of the solution classes - Lazy techniques do not built intensional descriptions of the solution classes

Partial domain model (from lazy learning methods)

- Goal: to use the similitude terms generated by LID for analyzing the compounds of the Toxicology dataset
 - Lazy process

```
<u>Function</u> C-LID (p, D, S<sub>D</sub>, C)

<u>if</u> p satisfies some similitude term <u>then return</u> class

<u>else</u> LID (p, D, S<sub>D</sub>, C)

<u>end-if</u>

<u>end-function</u>
```

- Eager process:
 - LID with leave-one-out method to generate similitude terms
 - To select a subset of similitude terms
 - Analyze the case-base using the selected similitude terms

partial domain model

- <u>if</u> exist similitude term satisfying p <u>then</u> use it <u>else</u> LID
- use LID. If the solution has not enough support then use similitude terms
- use both similitude terms and LID

Summary: building partial domain models

- Eager learning methods produce complete domain models in the sense that class descriptions satisfy all known examples
 - In complex domains these descriptions could be too generals

- Using lazy learning methods we can obtain partial domain models since class descriptions are satisfied by a subset of examples of each class
 - In complex domains these descriptions could not be discriminatory

What to explain in lazy learning methods?

- To explain the Retrieve
 - Based on similarities

- To explain the Reuse -
 - Based on similarities among the problem and the cases of each class
 - The user can easily understand the differences among the cases of each class

- Given a problem, a CBR system retrieves the most similar case
 - Cases have a complicated structure (Doyle et al, 2003; McSherry, 2005)
- For some domains (e.g. Medicine) experts understand better a description of the differences between the problem and the retrieved cases
- The more explanatory cases are those close to the frontiers of classes (Doyle et al, 2004)
- An explanation should make explicit the contribution of each feature value to the classification of the problem (Nugent and Cunningham, 2005)
- Both the similarities and differences between problem and retrieved cases are useful for CBR explanations (McSherry, 2005)

Generalization as Explanation (Armengol and Plaza, 2004)

- Our approach: usage of symbolic similarities to explain the classification
- 1) Explanation of Retrieve
 - A symbolic description consisting of all that is shared by the problem \checkmark and the retrieved cases
- 2) Explanation of Reuse
 - \checkmark Cases are organized according to the class
 - \checkmark A symbolic description for each class
 - Each symbolic description consists of all that is shared by the \checkmark problem and the cases of a class

Generalization as Explanation (Armengol and Plaza, 2004)

- Our approach: usage of symbolic similarities to explain the classification
- 1) Explanation of Retrieve
 - \checkmark A symbolic description consisting of all that is shared by the problem and the retrieved cases
- 2) Explanation of Reuse
 - \checkmark Cases are organized according to the class
 - \checkmark A symbolic description for each class
 - Each symbolic description consists of all that is shared by the problem and the cases of a class
 - Similitude terms of LID
 - Anti-unification concept

- A generalization is a description showing (some) aspects shared by a set of objects
- The most specific generalization (*anti-unification*) is a description showing *all* aspects shared by a set of objects

THE ANTI-UNIFICATION IS A SYMBOLIC SIMILARITY

1) Explanation of Retrieve

 ✓ A symbolic description consisting of all that is shared by the problem and the retrieved cases

2) Explanation of Reuse

- $\checkmark\,$ Cases are organized according to the class
- $\checkmark\,$ A symbolic description for each class
- Each symbolic description consists of all that is shared by the problem and the cases of a class

C-084: 2,4 - diamino anisole

Anti-unification vs similitude term

- Similitude term of LID
 - Contains the features relevant for classification
 - Supervised data
- Anti-unification
 - Contains all that is common among a set of cases
 - It is independent on the similarity measure used for retrieval
 - Semi-supervised data
 - Explanation of clusters (Fornells et al., 2007)

Conclusions

- Generalizations are present in both eager and lazy learning methods
 - Eager learning methods build global approximations
 - Lazy learning methods build local approximations
- We propose three usages of generalization :
 - As symbolic similarity among cases since generalizations contain aspects shared by a set of objects
 - By storing the generalizations built by lazy learning methods we can obtain partial domain models
 - Generalizations can be interpreted as explanations of the system result

